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SuperCDMS SNOLAB Projections

iZIPs provide nearly background-free
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Review of recoil energy calculation

In SuperCDMS detectors, recoil energy is measured from total
phonon energy after correcting for Neganov-Luke phonons:

E _ ™4V for iZIP
E _ total = ~70V for CDMSlite
jonization “energy for e/h

pair =3 eVin Ge

Accurate recoil energy measurement requires knowledge
of ionization yield (quenching factor) for given recoil type

Y

ionization — Eion/ErecoiI

Y.onization 1S Measured directly with iZIPs on an event-by-event basis during
exposure to gamma and neutron sources. But this is not the case for HV
detectors. Y. must be determined independently in order to extract E

ionization recoil
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Current status on ionization yields
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Example effects of ionization yield
cutoff on SNOLAB sensitivities

Baseline resolution case: o, = 50(25) eV for Ge (Si), HV = 50V

Hardware threshold assumed to be 7*c,, = 350(175)eV
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Here, ionization threshold makes a large difference in sensitivity for HV detectors. The difference arises from
hardware threshold being below (optimistic case) versus above (worst case) the ionization threshold and
hence where Luke phonons exist to amplify the NR signal.
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Example effects of ionization yield
cutoff on SNOLAB sensitivities

Goal resolution case: 0,, = 10(5) eV for Ge (Si), HV = 100 V
Hardware threshold assumed to be 7*0,, = 50(35) eV
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Here, effect is less severe bc the hardware threshold is so low it’s already below the ionization threshold in both
scenarios (for Si) so there’s no difference in NR thresholds between optimistic and worse case. In fact, Luke gain is no
longer useful for reducing threshold, instead use it to tune what ER backgrounds wind up in the signal NR region.
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A few other caveats:

1. Several effects are experimentally degenerate with ionization yield in SuperCDMS
detectors. In other words, € and “1” are not really constants at all energies, voltages
and detectors.

E = Etotal
recoil 1+Y * evbias / £

ionization

These will vary with field strength, phonon sensor design and crystal purity. To
reduce systematics, important to verify energy scale in the same type of detectors
used for WIMP search

2. The intrinsic spread in ionization yield matters as well as the mean in determining
experimental sensitivities. The fano factor will affect this and so far, we don’t have a
good understanding of fano factor for nuclear recoils in Ge or Si.
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Measuring the energy scale for
SuperCDMS

SuperCDMS is pursuing multiple energy
scale calibration measurements:

Soudan photoneutron data
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1. In the near term we have taken data at Tl
Soudan with two photoneutron source af chetss
: ue to

SbBe and YBe. Will provide calibration
CDMSlite down to at least 1 keV

neutrons
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Summary

G2 SuperCDMS sensitivity depends on knowing the detector responses to
nuclear recoils, especially for HV detectors

Effects of ionization yield, and especially its cutoff value, can be subtle with
SuperCDMS HV detectors; depends on the thresholds are achieved by the technology

With optimal resolutions for our HV detectors (<10 eV), Neganov-Luke gain is no
longer a tool to reach low thresholds, but instead a way to tune what backgrounds

overlap with our signal region

Effects degenerate with ionization yield imply its important to do the calibrations with
the same types of detectors at the same voltages as the WIMP search

Nuclear recoil calibration of SuperCDMS Soudan and SuperCDMS
SNOLAB detectors are in the works, stay tuned!
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Elastic scattering cross sections

From Ray Bunker’s thesis (appendix E.4)
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Figure E.3: Cross sections for neutrons to elastically scatter from Si (top) and
Ge (bottom) nuclear targets as a function of incident neutron energy. Zoomed
in views of the resonant regions are provided in the insets.

interpolated from data found in the JENDL database [609].

10,000

Cross sections

Dotted lines indicate several
energies of interest:

40 keV =~ TUNL min energy
with (p,Li) beam

278 keV = ~ backscattered
DD energy from deuterium
target

2.5 MeV = ~ energy of
straight DD beam
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How does CDMS Il yield compare
to Lindhard (Sl)?

CDMS Il silicon data
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Recoil Measurement from Scattering

A straightforward way to calibrate the nuclear recoil energy scale is to
use a neutron scattering setup

Target (.Ge or i) Neutron detector
cryogenic detector array
measures recoil e ’O)
) energy AE ................
Incoming .
neutron beam,
E, =2.45MeV
M? Mr ., Mr\* .,
AFE = 2E, > + sin“ 6 — (cos 0) —— | —sin“#0
(Mn + MT) Mn MIl

Precise knowledge of the scattering angle and incident (monoenergetic)
neutron beam will yield the recoil energy in the calibration detector
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2.5 MeV incoming n on Ge

EDep target [keV]

0.5% uncertainty at 100 eV yields ~¥30% energy scale uncertainty

Smearing from angular and detector resolution not applied
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scattering angle (degrees)

n interaction length ~ 6.5 cm
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2.5 MeV incoming n on Ge (Yield)

Previous slides don’t include statistical fluctuations from finite e/h pair generation.
Below is (idealized) yield vs recoil energy for a D-D beam with secondary detectors that
subtend 1°, and a 10 eV Ge detector resolution.
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In total phonon energy vs recoil energy plane its possible to unfold individual e/h
peaks visible here =»adequate detector and angular resolution also provides

understanding of nuclearrecoil fano factor 16



DD generator Ba5|cs

 Reaction: D+ D->3He +n, Q=3.36 MeV
* Energy, intensity and beam purity depend
mildly on emission angle

* Acceleration potentials of 100-300 kV produce

neutrons 2-3 MeV at 1e6-1e10 n/s into 4pi
* Most generators can be pulsed (min ~10 us);
measurement may be clean enough to do

without

 Compact, portable generators widely available

(used in field by oil industry).

lon Source Assembly

Generator Head

-t 315 -] High Voltage Cable

618*30

Schematic of Adelphi
Generator (used by LUX)

!

Turbopump
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Secondary detector array

* Requires dedicated fine-grained neutron detector array covering scattering angles
of interest from 2° to 10° (corresponds to energies from 100 eV to 1 keV)

* |deally detectors contribute < 0.25° angular resolution to scattering angle
measurement; this can be achieved with ~1cm detector at a distance of 1.5 m.

* Maximizing angular coverage while minimizing channels is key to design

* Detection threshold must be reasonably low (50-100 keV for neutrons)

* Timing and PSD help (nanosecond timing resolutions not needed)

Collimator Silicon , Plastic Scintillator
Detector ~ counters

One possibility:
borrowing an

Forl . <rand . @
bar L b idea from :

ddetector >> bar’ ar "_ &

approximation : ANTONELLA, use s
contributes small i bars of plastic
angular smearing # scintillator to i }9 g

(<0.25°) " approximate arc e
of a circle. L m

ANTONELLA array also available for use and can be %
used to measure recoil energies of a few keV with .
2.5 MeV beam
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Hamamatsu R760 phototubes

Major cost for a fine-grained array with up to several dozen channels is
in the instrumentation and readout! (few K per channel)

* Thank to Erik Ramberg and the now defunct SELEX experiment, we have been given a long-term
loan of ~¥32 Hamamatsu R760 phototubes (yay!). These tubes have active photocathode
diameter of 1cm and already instrumented with bases.

* Investigating possibility to use Mu2e boards (designed at Fermilab by Sten Hansen and
colleagues) to readout the array. Adapters to use the boards with PMT’s already exist

* NOVA style plastic scintillator can be had for free with the sizes we want, although for not much
money we can also buy high-quality EJ-200.

With these pieces, the cost of the fine-grained neutron array would be almost negligible
(and gives Fermi/ab/NorthwestenB su!erzmeﬁgudents lots of fun things to do)
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In situ calibration at SNOLAB

calibration

SuperCDMS tower
towers

Precise position information of iZIPs allows for
small angle reconstruction and thus allows to
reconstruct down to very small energies.
Position resolution studied in advance at a test
facility.

Precision of 5-10% may be achieved down to
intended trigger thresholds (100 eV)
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* Monoenergetic beam of neutrons produced by a
D-D generator (such as an Adelphi DD108)

 Aim beam at central array of detectors and
detect scatter with calibration tower offset from
detector stack (3/8” copper cryostat layers)




